红外温度传感器在生化反应中的应用

作者:温度传感器芯片营销经理 Joris Roels

我的高中化学老师曾经说过,化学反应可以理解为反应物之间发生能量足够大的碰撞。要想发生反应,反应物之间必须频繁碰撞,而且还需要足够大的能量(活化能)。此外,温度也是化学反应的关键因素,因为温度升高在本质上会加快粒子的运动速度,从而增加碰撞的频率和能量。

当然,喜欢化学的人都知道除了温度,其他因素也会影响化学反应。压力、表面积(例如,细粉与块状材料的差异)和反应物浓度都会影响碰撞频率,但催化剂不同,它通过降低反应活化能来起作用。不过在很多情况下,严格的温度控制是一些化学反应能否成功发挥救生价值的关键因素之一,如大家所熟知的聚合酶链式反应 (PCR) 。PCR 的作用是扩增(复制)DNA,反应期间会存在很多变体,但三个基本步骤不变。

In-cabin Harnessing life-saving chemistry with infrared temperature sensors首先是“变性”这个高温 (94~98 °C) 步骤,期间 DNA 双螺旋结构会在化学剪切力作用下发生氢键断裂,变成两个单链 DNA 模板分子。下一步是退火 (50~65 °C),期间 DNA 引物分子会选择性地与两个 DNA 模板相结合。如果没有精确地控制温度,引物可能就不会以正确的选择性方式结合或根本无法结合。

最后一步是延伸(通常为 72 °C),反应溶液中的核苷酸(构成 DNA/RNA 的小分子有机物)会与模板和引物发生反应,生成双链分子。最终,一个 DNA 分子就变成了两个双链 DNA 分子。

我们可以重复这个过程,由于反应原料会在每个步骤中翻倍,我们会在 40 个循环后得到 2 的 40 次方个分子,即 1,099,511,627,776 个分子。在有了如此大量的分子之后,我们就可以通过其他方法来做进一步检测。

PCR 的应用最广泛的一项是检测感染。病毒或细菌等病原体在DNA/RNA 经扩增之后,可以在患者样品中检测出来。这一应用在新冠疫情的影响下蓬勃发展,PCR 技术还可以用来检测很多其他致病物。

很多生化反应过程在医学诊断中得以运用,PCR 只是其中一例。为了让对温度敏感的生化反应能够更快地发生,我们用到了“热循环仪”。热循环仪配备一个或多个带孔的加热板,孔中可以插入装有反应物的管子。

热循环仪的目的是让这些管子进入预定的温度程序,能够实现快速、准确的温度循环。一些模型支持控制加热板的温度梯度,以使不同的样品能够处在不同的温度下。这一功能主要用于研究阶段,旨在优化温度循环的某些关键步骤。

在测试过程中,样品经常被替换,这使得制造商很难通过直接接触的方法可靠地测量管子。

严格控制温度循环取决于精确的传感器输入,这就是红外温度传感器的作用所在。

它们实现了非接触式温度测量,与接触式温度计相比,这是一个巨大的优势。此外,避免直接接触,大大降低了标本间交叉污染的风险。

我们的传感器芯片(例如,MLX90614)在出厂前会经过校准,直接集成到热循环仪中即可使用。视野选择范围宽泛,可提高设计自由度。选择小视野可以扩大传感器与样品之间的距离。

我们最新推出的创新型产品包括 SMD封装的 传感器芯片 (MLX90632),与以往芯片相比尺寸大大缩小,便于打造更小、更轻的便携式诊断设备。此外,小型化的传感器芯片还有助于构建传感矩阵,从而实现多点温度控制。

目前,医学诊断检测正迅速转变,过去需要送样到专门的医学实验室并花几周时间才能等到结果,而现在已经可以在现场进行检测。现在,诊断过程几乎就在病人身边进行,结果在几小时内就能得到,而不需要等待数天。在这场势不可挡的转变中,红外温度传感器起着至关重要的作用,只是有待普及。通过使用红外温度传感器,我们能够更严格地控制温度,进一步调整生化反应过程,从而实现更快速、更准确且更可靠的诊断。

Life-saving chemistry #Melexis


相关文章

深入探讨您的项目

联系我们